首 页

研究方向

团队成员

科研成果

研究组新闻

仪器设备

活动剪影

联系我们

期刊论文
期刊论文(按时间顺序排列):

2025

2024

[ 1. ] Defect-Mediated Cu–S Pair Active Sites Modulating Proton Supply to Facilitate Overall CO2 Photoreduction with H2O,Acs Catalysis,2024,1413):9734   [ LINK ]   

[ 2. ] Healing the structural defects of spinel MnFe2O4 to enhance the electrocatalytic activity for oxygen reduction reaction,Journal of Energy Chemistry,2024,9712-19.   [ LINK ]

[ 3. ] Self-repaired Cathode Electrolyte Interphase to Stabilize the High-nickel Cathode Interface by a Sustained-release Multifunctional Electrolyte Additive,Engineering Journal,2024,488  [LINK]

[ 4. ] Precise Modulation of Surface Lattice to Reinforce Structural Stability of High-Nickel Layered Oxide Cathode by Hafnium Gradient Doping,Energy StoMaterials,2024  [ LINK ]

[ 5. ] Neighbouring Synergy in High-density Single Ir Atoms on CoGaOOH for Efficient Alkaline Electrocatalytic Oxygen Evolution,Angewandte Chemie lntEdition,2024.e202404418  [ LINK ]

[ 6. ] Charge Trapping in Semiconductor photocatalysts:journal of the American Chemical society,2024,146(13);87 [ LINK ]

2023

[ 1. ] Promoting Photocatalytic H2 Evolution through Retarded charge Trapping and Recombination by Continuously Distributed Defects in Methylammorlodide Perovskite,Angew. Chem.Int. Ed..2023,2023081401-6  [ LINK ]

[ 2. ] Edge-Sharing Octahedraly Coordinated Ni-Fe Dual Active sites on ZnFe204 for Photoelectrochemical Water Oxidation,Advanced science,2023,1-9.

[ 3. ] Amino-functionalized Cu for Efficient Electrochemical Reduction of CO to Acetate,ACs Catal,2023,133532-3540  [ LINK ]

[ 4. ] Confinement synergy at the heterointerface for enhanced oxygen evolution,Nano Research,2023  [ LINK ]

[ 5. ] Synthesis of 1,2-propanediol by Electro-reduction of Formaldehyde with Oxygen-enriched Graphene,ChemNanoMat,2023 [ LINK ]

[ 6. ] Remote synergy between Heterogeneous Single Atoms and Clusters for Enhanced Oxygen Evolution,Nano Lett,2023,233309-3316. [ LINK ]

[ 7. ] Directing in-situ selfoptimization of single-atom catalysts for improved oxygen evolution,Journal of Energy Chemistry,2023,80284-290 [ LINK ]

2022

[ 1. ] Neighboring Cationic Vacancy Assisted Adsorption Optimization on single-Atom sites for lmproved Oxygen Evolution,AcsCatal,2022,1212458-12468. [ LINK ]

[ 2. ] Modulating hydrogen bonding in single-atom catalysts to break scaling relation for oxygen evolution,Chem Catal,2022,22,1-14   [ LINK ]

[ 3. ] Unpalired Electron Engineering Enables Efficient and selective PhotocatalytReduction to CH4,J. Phys. Chem. Lett.,2022,13,8397-8402   [ LINK ]

2021

[ 1. ] Accelerating C2+ alcohols synthesis from syngas by simultaneous optimizations of CO dissociation and chain growth over CuCo alloy catalyst.,Chin. Chem. Lett.,2021,32(7):2203-2206. [ LINK ]

[ 2. ] Facile precipitation microfluidic synthesis of Monodisperse and inorganic hollow microspheres for Photocatalysis,J. Chem. Technol. Biotechnol.,2021,97(5):1215-1223. [ LINK ]

[ 3. ] Single atoms supported on metal oxides for enecatalysis.,. Mater. Chem.A,2021,10(11):5717-5742  [ LINK ]

[ 4. ] Chanonets derived from CuCo204 spinel oxides for higher alcohols synthesis from syngas [ LINK ]

[ 5. ] Copper-catalysed exclusive C02 to pure formic acid conversion via single-atom alloying,Nat. Nanotechnol,2021,16(12):1386-1393. [ LINK ]

[ 6. ] Improvement of photocatalytic hydrogen evolutiona5Ti2AgS507by flash sintering method.,Appl. Phys. Lett.,2021,119(7):071903. [ LINK ]

[ 7. ] Photodepositing Cds on the Active Cyano Groups Decorated g-C3N4 in 2-scheme Manner Promotes visible-light-Driven Hydrogen Evolution.,Small,2021,17(39):2102699. [ LINK ]

[ 8. ] construction of atdispersed Cu sites and s vacancies on Cds for enhanced photocatalytic CO2 reduction. Mater. Chem. A,2021,9(30):16339-16344 [ LINK ]

[ 9. ] interfacial charge transfer of heteroiunction photocatalvsts, Characterization and calculationsurf. interfaces,2021.25101265 [ LINK ]

[ 10. ] In-situ Generated High-valent lronAtom Catalyst for Efficient Oxygen Evolution.,Nano Lett.,2021,21(11):4795-4801 [ LINK ]

[ 11. ] fiber bundle-based chemiluminescence array detection.Anal.Methods.2021.13(22):2459-246 [ LINK ]

[ 12. ] visible-light deposition ococatalyst on Ti02: Cr valence regulation for superior photocatalytic CO2 reduction to CH4,. Energy Chem.2021,64103-112 [ LINK ]

[ 13. ] independent Cr203 functions as efficienon the crystal facets engineered Ti02 for photocatalytic CO2 reduction,Appl. Surf Sci,2021,554149634 [ LINK ]

[ 14. ] Defect-mediated electron transfer in photocatalysts,Chem. Commun.2021,57(29);:3532-3542 [ LINK ]

[ 15. ] Engineering active sites on hierarchical ZnNi lavered double hvdroxide architwith rich Zn vacancies boosting battery-type supercapacitor performances,Electrochim. Acta,2021 ,374137932 [ LINK ]

[ 16. ] ,synchrotron infraredspectroscopic high-throughput screening of multi-composite photocatalyst films for air purification,Catal. Sci. Technol,2021,11(3):790-794. [ LINK ]

[ 17.] lnvestigation of interacial charge ransfer in Cux0@Ti02 heterounction nanowitowards highly efficient solar water splitting.,Electrochim. Acta,2021 367137426. [ LINK ]

[ 18. ] Enhancement and stabiilzation of isolated hvdroxyl roups via the construction of coordinatively unsaturated sites on surface and subsurface ofhydrogenated Ti02 nanotube arrays for photocatalvtic complete mineralization of toluene... Environ, Chem, En.2021.9(2):105080 [ LINK ]

[ 19. ] nhance the activity of multi-carbon products for Cu via P doping towarcreduction.Sci. China Chem..2021,64(7):1096-1102.[ LINK ]


技术发展返回顶部


专利著作返回顶部

Copyright © 中国科学技术大学能源催化与原位表征研究组 All Rights Reserved   |   皖ICP备05002528号
地址:安徽省合肥市蜀山区合作化南路48号(中国科学技术大学国家同步辐射实验室3号楼 408/415/416/424)   |   电话:0551-63607492   |   邮箱:baoj@ustc.edu.cn
网站设计与制作维护:卫来科技 提供